1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
| package main
import ( "fmt" "math" "math/cmplx" )
// 定义扭曲函数,这里以幂函数为例 func distortionFunction(omega float64) float64 { return math.Pow(omega, 1.5) // 可根据需要修改扭曲函数 }
// 离散傅里叶变换 func dft(signal []float64) []complex128 { N := len(signal) result := make([]complex128, N)
for k := 0; k < N; k++ { var sum complex128 for n := 0; n < N; n++ { omega := -2 * math.Pi * float64(k*n) / float64(N) sum += complex(signal[n], 0) * cmplx.Exp(complex(0, omega)) } result[k] = sum }
return result }
// 扭曲离散傅里叶变换 func wdft(signal []float64) []complex128 { N := len(signal) spectrum := dft(signal)
for k := 0; k < N; k++ { omega := 2 * math.Pi * float64(k) / float64(N) warpedOmega := distortionFunction(omega) spectrum[k] *= cmplx.Exp(complex(0, warpedOmega)) }
return spectrum }
// 反离散傅里叶变换 func idft(spectrum []complex128) []float64 { N := len(spectrum) result := make([]float64, N)
for n := 0; n < N; n++ { var sum complex128 for k := 0; k < N; k++ { omega := 2 * math.Pi * float64(k*n) / float64(N) sum += spectrum[k] * cmplx.Exp(complex(0, omega)) } result[n] = real(sum) / float64(N) }
return result }
func main() { // 生成一个简单的示例信号 signal := make([]float64, 8) for i := range signal { signal[i] = float64(i) }
// 进行WDFT变换 spectrum := wdft(signal)
// 对频域表示进行处理(这里省略具体处理步骤)
// 进行反离散傅里叶变换 outputSignal := idft(spectrum)
// 输出结果 fmt.Println("原始信号:", signal) fmt.Println("经过WDFT变换后的信号:", outputSignal) }
|