Discussion and analysis of Text2SQL technology, the most difficult pain point in the commercial implementation of agents.(Agent 商业落地里最难的痛点 Text2SQL 技术探讨和解析)

Discussion and analysis of Text2SQL technology, the most difficult pain point in the commercial implementation of agents.(Agent 商业落地里最难的痛点 Text2SQL 技术探讨和解析)

Agent 商业落地里最难的是 Text2SQL(NL2SQL),几乎是无法绕开的核心痛点,主要面临的三个核心问题:

  • 为什么到目前为止仍然没有真正可靠的商业共识性企业级解决方案?
  • 实际企业应用场景中,有哪些靠谱的思路和解决方案?
  • 是依托专有小模型还是基于模版宏套用替换变量的方式?
  • 如果是你,你怎么设计一个准确率足够高的 text2sql 引擎?

这是一个非常深刻且直击要害的商业落地问题。Text-to-SQL(或者说,更广义的 NL2SQL/Text2Analytics)下面我将从“为什么难”、“现有靠谱的思路”以及“技术选型”三个层面,系统地拆解这个问题。

Read more
Ultimate Guide to Quantizing AI Large Language Models: From FP32 to INT4, How to Make Large Models Perform at Full Speed on Consumer Devices?(AI 大语言模型量化终极指南:从 FP32 到 INT4,如何让大模型在消费级设备部署应用及选型?)

Ultimate Guide to Quantizing AI Large Language Models: From FP32 to INT4, How to Make Large Models Perform at Full Speed on Consumer Devices?(AI 大语言模型量化终极指南:从 FP32 到 INT4,如何让大模型在消费级设备部署应用及选型?)

——深度解析量化格式、尺寸差异与硬件适配策略(附 M3 Pro 实战指南)

个人常用办公终端设备型号:

  • Macbook Pro M3 (36G 内存定制款)

小结

  • 💡 Apple 用户闭眼选 BF16:M3 Pro 芯片的 BF16 性能碾压 FP16,18GB 内存可流畅运行 30B 级模型
  • ⚠️ INT4 是双刃剑:70B 模型塞进 36GB 内存的唯一方案,但精度损失高达 15%+
  • 🔮 未来属于 FP8:NVIDIA H100 已支持,苹果 M4 或成转折点

Read more
Thoughts on Agent-based Enterprise Application Architecture.(Agent 企业级应用架构思考和挑战)

Thoughts on Agent-based Enterprise Application Architecture.(Agent 企业级应用架构思考和挑战)

“不确定性不是缺陷,而是新范式的特征,必须学会“回忆”,但同时也要学会“遗忘”。”

AI 时代,智能体本身的概率输出让软件走向不确定,或者说更个性。但这对企业级产品的准确率形成巨大挑战,怎么看待这种现状、机遇和商业风险?智能体和传统应用范式下在业务落地间角色和职能的划分和原则?

这是目前 AI 面临的核心问题,触及了 AI 原生时代企业软件架构、产品设计与组织协作的根本性变革和创业者的产品决策方向。

Read more